

Applications of GIS in some branches within the social sciences

Ha Minh Tri (PhD) HCMC, May 2015

Objectives

- Promote use of GIS as a tool to support research (increased visualisation, improved planning,...) and decision making.
- Acquire GIS as an additional skill to improve work quality and efficiency.

Outline of presentation

- 1. Introduction
 - Geographic information (GI) technologies
 - Current applications
 - Branches of social sciences applicable to GIS
- 2. Applications of GIS in some branches within the social sciences, and crossed disciplines e.g. program evaluation
- 3. GIS softwares, benefits of GIS, implementation conditions

1. Introduction

- GI technologies
- Current applications
- Branches of social sciences applicable to GIS

GI technologies

Global Positioning System (GPS)

 A system of satellites which can provide precise (X,Y) location on the earth's surface

- Remote Sensing (RS)
 - Use of satellites or aircraft to capture information (land cover) about the earth's surface
- Geographic Information System (GIS)

- Systems with capability for input, storage, manipulation/analysis and display of spatial information

✓ GPS and RS are sources of input data for a GIS.

Current areas of GIS applications (Yuan, 2008)

- Cartography
- Urban and regional planning
- Health
- Land & natural resource management
- Conservation e.g. sea turtle conservation
- Environmental modelling and management
- Safety e.g. transport
- Military services e.g. remote sensing
- Crisis management
- Trip navigation and routing
- Climate change
- Crime analysis and tracking

Some branches within the social sciences that are applicable to GIS

- Business studies
- Economics
- Sociology (incl. criminology, social movements, social change, social mobility, gender, stratification, ...)
- Social work (incl. poverty, social planning, social policy, child welfare, community development,...)
- Demography
- Development studies (incl. community development, public health, social policy, ...)
- Environmental studies

What is geographic information system (GIS)?

- GIS is a system designed to capture, store, manipulate, analyze, manage, and present all types of spatial or geographical data
- GIS allows us to view, understand, question, interpret, and visualize data in many ways that reveal spatial relationships, patterns & trends in the form of digital

maps, globes, reports and charts.

GIS helps answer basic questions:

- Where is it?
- What else is nearby?
- Where is the highest concentration of 'X'?
- Where can I find things with characteristic 'Y'?
- Where is the closest 'Z' to my location?

GPS-Global Positioning System

Satellite tracking

http://www.seaturtle.org

Satellite tracking

www.ou.edu.vn

http://www.seaturtle.org

Why GIS is unique?

- GIS integrates Spatial (map data) and their non-spatial (attribute information) into one "system" that allows the user to <u>interact</u> with both aspects simultaneously.
- It stores information about the world as a <u>collection of</u> <u>thematic layers</u> that are linked together through georeferencing

Clear

2. Applications of GIS in some branches within the social sciences

Three views of GIS

1. GIS as GEOdatabase Before GIS: scattered geographic information

Descriptive attributes

Map

Descriptive attributes

Descriptive attributes

Мар

UỜNG ĐẠI HỌC MỔ TP. HCM hội học tập cho mọi người

• **Geodatabase:** a spatial database containing data that associate with geographic information

2. GIS as GeoVisualisation Starbucks vs. Dunkin Donuts

3. GIS as spatial analyst

• **Geoprocessing:** a set of tools take geographic information from existing data, apply spatial analysis functions to identify patterns or discover knowledge.

Locations of tobacco billboards and public schools in St Louis city-a buffer analysis (Luke et al., 2000)

 Public school (radius 0.5 miles)

W

Concentric ring buffer zones around Alleygated areas in Mersey side – buffer zone analysis

- Crime counts
- Property counts
- Burglary rate

www.ou.edu.vn

Source: Young et al. (2003).

Challenges/Limitations

- Availability, accessibility and appropriateness of GIS infrastructure (human resources, hardware, software, data, skills,...)
- Willing users

Mapping for Analysis, Policy & Decision Making

Mapping rates: divorced relative to married

Youth police contacts in Riverside

Fire hazard rating

- 0

23

X

Legend Vertical Mapper Window Help

Ēkā pērs 🗉 🖬 🖬 🖬 🖬 🖬 🖉 🔇 ↔ 🗲 🕅 🗖 🗛 🖉 🖓 🔧 🖄 🗛 🖉 🖉 ↔ 🗲 📡

San Diego County Fire Hazard Areas

Planning and projections: multiple variable map for decision making

Maps for school planning: children aged 5-17 in Riverside, 2000; areas with large no of children

Areas of growth (\uparrow) or Decline (\downarrow) in school age children (1990–2000) – a two-variable map

Large populations of children, growth and few schools- a multi-variable map for planning/policy

School children impacted by Hurricane Katrina in Louisiana, Alabama, and Mississippi

HIV infected rate in Africa

Immigration and unemployment 2004 in the US

Progress monitoring

TRƯỜNG ĐẠI HỌC MỞ TP. HCM

hội học tập cho mọi người

Map of the provincial poverty rates

The provincial poverty incidence over 1999-2006

Spending patterns in Spain during Easter 2011 in Spain (see video)

Google earth and other maps e.g. soil map

Space – time GIS

A week-long individual mobility path in a city

Spatial econometrics

- Developed from early 1970s
- A subarea of econometrics that offers an alternative approach where traditional methodologies are inappropriate
- A spatial econometrician may ask Why household income is higher in some regions of the country than others.

Spatial regression (SR)– A spatial analysis technique

- Spatial regression (SR) is a global spatial modeling technique in which spatial autocorrelation among the regression parameters are taken into account (Duzgun and Kemec, 2008).
- Often spatial relationships are ignored → weakens our ability to generate meaningful inferences about the processes being studied.
- Spatial data are often:
 - spatially autocorrelated (features near each other are more similar than those further away)
 - Non-stationary (features behave differently based on their location/regional variation)

Spatial regression (con't)

 Used in many areas, such as business, defense, education, health and human services, natural resources, and public safety, SR helps answer *why* questions.

Example 1 – Socio-geographical factors in vulnerability to dengue in Thai villages (Tipayamongkhogul & Lisakulruk, 2011)

- Ordinary linear model used
- **DV**: cumulative degue incidence
- IV: 10 socio-geographic variables e.g. average number of persons per house, number of houses in a village, distance from a village to the nearest urban area, number of factories, number of schools within a 5-km radius of a village, distance from a village to the nearest school, to the nearest health centre, to the nearest urban area, to the nearest well, to the nearest factory, and to the nearest road.
- Results: Average number of persons per house, and distance from a village to the nearest urban area are predictors of DV

Example 2 – Income inequality, disadvantage and homicide (Wang & Arnold, 2008)

- Routine activity, strain and social disorganisation theories used
- DV: homicide rate in Chicago
- IVs: 11 variables incl. black residents, families below the poverty line, families receiving public assistance, female-headed households with children under 18, unemployment, residents who moved in the last 5 years, renter-occupied homes, residents without high-school diplomas, households with an average of more than one person per room, Latino residents and localised income inequality index.
- Factor analysis was used to consolidate 11 IVs into 3 factors: concentrated disadvantage, concentrated Latino immigration, and residential instability.
- Concentrated disadvantage was found a strong predictor of homicide rates.

Homicide rates and concentrated disadvantage

GIS in program evaluation

- Used to provide cross-sectional, snapshots of data
- Used to plot change over time, incl. impact and outcome data.

Example: FitNow program

- A: program sites
- B: Program capacity and adolescent concentration, per 2010 US Census

above 12%

Source: Azzam and Robinson (2013).

- A, Baseline body mass index (BMI) scores.
- B, Change in BMI between Times 1 and 2

Source: Azzam and Robinson (2013).

- A, Change in BMI scores for females.
- B, Change in BMI scores for males

Source: Azzam and Robinson (2013).

Source: Azzam and Robinson (2013).

3. GIS softwares, benefits of GIS, implementation conditions

Top benefits of GIS

- Improved communication & intuitive tool map & data visualisation (instead of reading & analysing MANY pages of text report)
- Better decision making location (site selection, zoning, planning,...)
- Better geographic information recordkeeping e.g. land/area ownership, administrative boundaries,...
- Managing geographically e.g. land use, crime, distribution of resources, ...

Các phần mềm GIS thương mại

- MapGuide
- Microstation
- ArcGIS
- MapInfo
- Intergraph
- ENVI
- ..

Các phần mềm GIS mã nguồn mở (freeware)

- GRASS
- JUMP GIS
- PostGIS
- •

. . .

 QGIS (version 1.6): cấu hình RAM = 1GB, Win XP hoặc mới hơn, 1.6GHz processor là đủ

Tại sao GIS cho sinh viên, nhà nghiên cứu, nhà quản lý?

- Hiểu biết và sử dụng được công nghệ GIS sẽ giúp tăng hiệu quả công việc của sinh viên, các nhà nghiên cứu, thực hành, quản lý, ...
- Riêng đối với sinh viên, GIS giúp làm tăng giá trị gia tăng (value-add), và tính thực hành của sinh viên khi ra trường → tăng tính cạnh tranh trong đào tạo (gồm tăng khả năng tìm việc làm của sinh viên).

Vậy các điều kiện để triển khai GIS?

- ✓ Con người
- ✓ Software
- ✓ Data
- ✓ Hardware
- ✓ Approaches

Thank you for your attention!